A fast and adjoint-free nonlinear data assimilation (DA) system was developed to simulate 3D baroclinic circulation in estuaries, leveraging two recently developed technologies: (1) a nonlinear model surrogate that executes forward simulation three orders of magnitude faster than a forward numerical circulation code and (2) a nonlinear extension to the reduced-dimension Kalman filter that estimates the state of the model surrogate. The noise sources in the Kalman filter were calibrated using empirical cross-validation and accounted for errors in model and model forcing.